
Cheatography

Intro to Astronomy Cheat Sheet by bittbobitty via cheatography.com/46577/cs/13523/

Keplar		Specia
The Law of Ellipses	The path of the planets around the sun is elliptical in shape, with the centre of the sun being located at one focus.	Definitio
The Law of Equal Areas	An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.	E = mc
The Law of Harmonies	The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.	

Parallax is the apparent displacement of an object because of a change in the observer's point of view.

Equation is d = 1/p where;

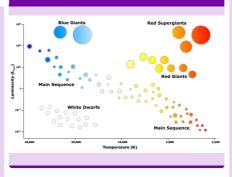
- d = distance measured in parsecs
- p = parallax angle measured in arcseconds

pecial Relativity				
efinition	Mass and			
	energy are the			
	same physical			
	entity and can			
	be changed into			
	each other.			

E = mc^2 The increased relativistic mass (m) of a body times the speed of light squared (c^2) is equal to the kinetic energy (E) of that body.

The Sun The nuclear fusion reactions that transform hydrogen to helium are part of the reason that the sun shines. The energy released from the rest energy of hydrogen atoms that are fused to form helium.

Star Luminosity and Distance


The	If two stars have the
size	same effective
of a	temperature but differ
star	in size then the larger
	star has a greater
	surface area and as it
	radiates the same
	amount of energy per
	unit surface area per
	second as the
	smaller star its total
	power output or
	luminosity will be
	greater.

The
distance
to the starThe closer the star the brighter
it will appear.LuminosityThe intrinsic brightness of a
celestial object.Apparent
MagnitudeThe magnitude of a celestial
object as it is actually
measured from the Earth.

Star Luminosity and Distance (cont)

Absolute The magnitude (brightness) of Magnitude a celestial object as it would be seen at a standard distance of 10 parsecs.

H-R Diagram

HR Diagram

1. The main sequence stretching from the upper left (hot, luminous stars) to the bottom right (cool, faint stars) dominates the HR diagram. It is here that stars spend about 90% of their lives burning hydrogen into helium in their cores. 2. Red giant and supergiant stars (luminosity classes I through III) occupy the region above the main sequence. They have low surface temperatures and high luminosities which means they also have large radii. Stars enter this stage after they have exhausted the hydrogen fuel in their cores and have started to burn helium and other heavier elements. 3. White dwarf stars (luminosity class D) are the final evolutionary stage of low to intermediate mass stars, and are found in the bottom left of the HR diagram. These stars are very hot but have low luminosities due to their smaller size.

EM Spectrum

Radio waves have the lowest frequency

By **bittbobitty** cheatography.com/bittbobitty/

Not published yet. Last updated 13th November, 2017. Page 1 of 3. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Intro to Astronomy Cheat Sheet by bittbobitty via cheatography.com/46577/cs/13523/

Solar Time				
Apparent Solar Time	Observed from Earth. Based on the apparent motion of the actual sun. It is based on the apparent solar day, the interval between two successive returns of the sun to the local meridian.			
Mean Solar Time	Is the hour angle of the sun plus twelve hours.			

Sun's Surface

Sunspots are visible as dark patches on the sun's photosphere, and correspond to concentrations of magnetic field where the convective transport of heat is inhibited from the solar interior to the surface. As a result, sunsports are slightly cooler than the surrounding photosphere, and, so, they appear dark.

Magnetosphere

Is the region around a planet dominated by the planet's magnetic field. Other planets in our solar system have magnetospheres, but Earth has the strongest one of all the rocky planets. It shields the planet from solar and cosmic particle radiation, as well as erosion of the atmosphere by the solar wind - the constant flow of charged particles streaming off the sun.

By **bittbobitty** cheatography.com/bittbobitty/

Basic Definitions Displace Change in pos an object. Mea ment or Distance metres (m). Sp by difference i (d) and final coord = xf - xi Velocity Distance trave unit time and tl direction of mo Measured in (r Speed The magnitude velocity (no dir specified) v = Accelera A change in ve unit time and tl tion direction of that change. Measi metres per sec second (m/s^2 - vi)/t (for cons

	Basic Definitions (cont)		Waves	
sition of basured in pecified in initial rdinates, d elled per the totion. (m/s).	Mass	A property of matter that determines how resistant an object is to changes in motion and how strong a gravitational force it exerts and experiences in the presence of another object. Measured in kg.	Deinition	A propagating disturbance in a stable, extended medium. The properties of the medium determine the behaviour of the waves. The medium does not move. Waves carry energy and
de of the irection d/t velocity per	Distance d = vit + (1/2)at^2 Equation Newton's Laws		Reflection	momentum. The incoming angle (incidence) equals the outgoing angle (reflection).
the at sured in econd per 2). a = (vf stant a).	Inertia Momentum	The velocity of an object doesn't change unless you apply a force. p = mv. Impulse is the same as force.	Refraction	When waves move between one medium and another and propagate at different speeds in the two media, the wave direction will bend. This is a direct concequence of the different speeds.
	Equal and Opposite Reactions	Force always comes in pairs. Equal in magnitude by opposite in direction.		
			Doppler Effect	Wavelength changes if source is moving
			Interferenc	Constructive or

Not published yet. Last updated 13th November, 2017. Page 2 of 3.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

destructive

е