ENERGY DEVELOPMENTS IN MEXICO – BEST PRACTICES FOR SUSTAINABLE TRANSPORTATION INFRASTRUCTURE

Unconventional Energy Resources in Texas – Lessons Learned, Strategies, and Opportunities

January 30, 2015, 8:30 AM-Noon SC Ballroom, Student Center, 2nd Floor Texas A&M International University, Laredo, Texas

As Mexico embarks on a new era in energy developments, it is strategic to learn from the experience in Texas. One of the critical areas is the relationship between the energy sector and the transportation infrastructure sector. Join us for a half-a-day event where we will discuss lessons learned and explore opportunities for outreach, synergy, and collaboration.

While the energy sector is having a dramatic positive impact on the Texas and U.S. economies, unconventional energy developments tend to generate very high volumes of truck traffic. Many of the affected roads were never designed to carry such high truck traffic volumes or heavy loads. The result has been accelerated pavement degradation, increases in crash and fatality rates, increases in congestion and air emissions, and degradation of roadside infrastructure such as shoulders, clear zones, driveways, and drainage structures. The energy and trucking industries have also been affected because of the accelerated truck fleet wear and tear and dramatic increases in vehicle repair costs. The surge in energy-related activities is also putting pressure on other transportation modes, such as railroads, ports, and pipelines.

In recent years, the Texas A&M Transportation (TTI) has developed a significant amount of expertise in critical areas related to energy developments, ranging from pavement maintenance and repair techniques, development and assembly of massive energy-related databases, analysis of safety trends and countermeasures, commodity flows and supply chain analysis, and coordination with public-sector and private-sector stakeholders. TTI has completed several projects in this area, and is currently undertaking a number of initiatives at the national, state, and local levels. Established in 1950, TTI is the world's largest university-based transportation research organization. TTI's objective is to solve transportation problems through research, technology transfer, and development of diverse human resources. To achieve this objective, the Institute participates in local, state, regional, and national levels in conducting interdisciplinary research programs that extend into the planning, design, construction, operation, maintenance, enforcement, safety, economic, ecological, and social aspects of transportation.

SPEAKERS

Cesar Quiroga, Ph.D., P.E., Senior Research Engineer, TTI (For additional information: Email: c-quiroga@tamu.edu, Phone: 210-321-1229) David Newcomb, Ph.D., Senior Research Scientist, TTI Edgar Kraus, P.E., Research Engineer, TTI Ioannis Tsapakis, Ph.D., Assistant Research Scientist, TTI

AGENDA

Time	Topic
8:30	Welcome and Introductions
	TAMIU Binational Center – Maria Eugenia Calderon Clúster Minero-Petrolero de Coahuila – Rogelio Montemayor City of Laredo – Mayor Pete Saenz Webb County – Judge Tano Tijerina Texas A&M Transportation Institute – Cesar Quiroga
9:00	Texas A&M Transportation Institute Overview
9:10	Oil and Gas Developments in Texas
	Evolution and trends
9:30	Recent and Current Research and Technology Transfer
	Impacts on transportation infrastructure Pavement maintenance, repair, and design Oversize and overweight trucks Transportation policy Funding Ports Water and environmental issues Other
10:15	Break
10:30	Breakout Table Discussions
	The purpose of the breakout discussions is (a) to explore topics and issues of interest to participants in more detail in relation to energy developments and transportation infrastructure in Texas, (b) to identify transportation infrastructure needs in Mexico, and (c) to identify areas of synergy and potential collaboration. Each breakout subgroup will have a leader, who will help coordinate the discussion and assemble notes that will be discussed as a group at the end.
	It is anticipated that three or four breakout groups will be assembled.
11:30	Breakout Group Presentations
11:50	Wrap-Up, Next Steps, and Adjourn

Energy Developments in Mexico – Best Practices for Sustainable Transportation Infrastructure

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Texas A&M International University, Laredo, Texas, January 30, 2015

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

1

Meeting Objectives

- Examine the relationship between the energy and transportation infrastructure sectors
- Review lessons learned from unconventional energy developments in Texas
- Explore opportunities for outreach, synergy, and collaboration to support sustainable energy and transportation developments in Mexico

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

3

Welcome

- TAMIU Binational Center
 - Maria Eugenia Calderon
- Clúster Minero-Petrolero de Coahuila
 - Rogelio Montemayor
- City of Laredo
 - Mayor Pete Saenz
- Webb County
 - Judge Tano Tijerina
- Texas A&M Transportation Institute
 - Cesar Quiroga

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

ŀ

Introductions

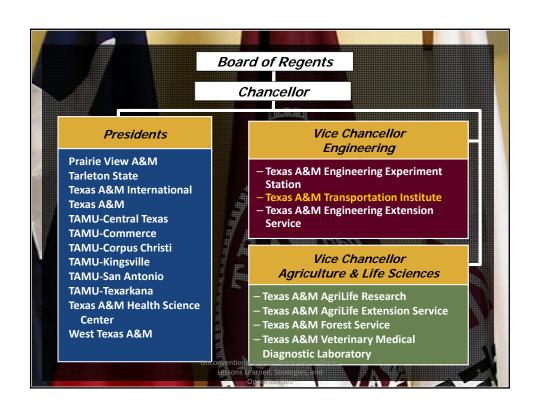
- Your name
- Where do you work?
- Expectations for this meeting?

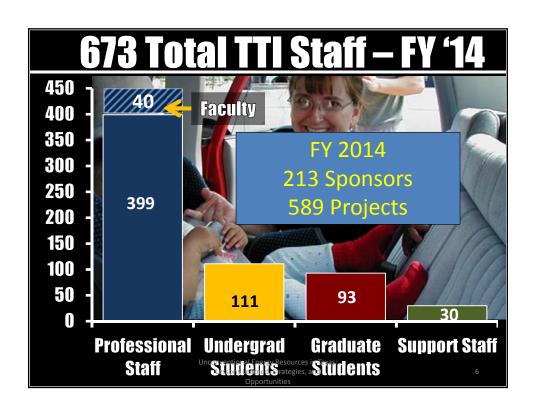
Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

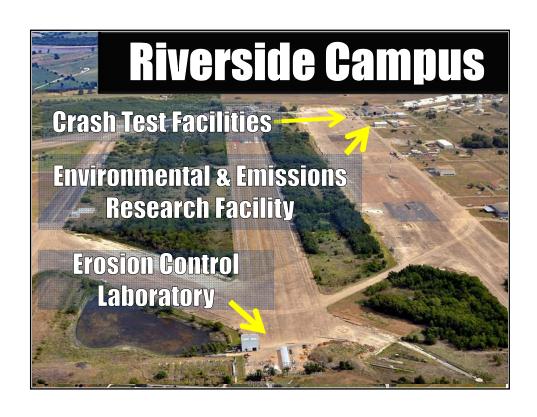
5

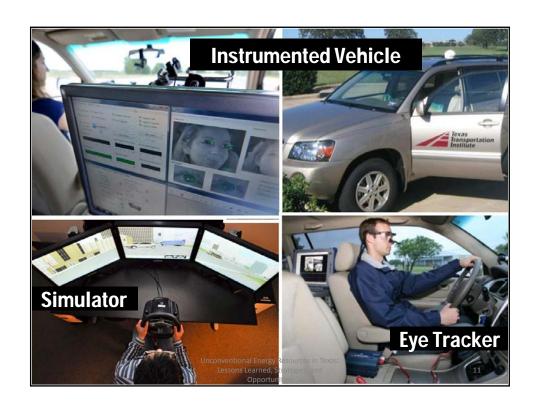
Texas A&M Transportation Institute Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants




nconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities





Mobility	Economics & Policy	Security
Freight Movement	Human Factors	Infrastructure
Environment	Safety Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities	Workforce Development

Groups Involved in Energy Research

- Materials and Pavements Division
- Freight Program
- San Antonio Office
- Policy Research Center
- Center for Transportation Safety
- ...

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

17

Materials and Pavements Division

- Sponsors include
 - TxDOT
 - NCHRP
 - FHWA
 - AASHTO
 - SHRP2
 - PrivateIndustry

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Research Areas

- Pavement design
- Materials
- Asphalt overlays
- Maintenance & rehabilitation
- Pavement evaluation
- Asset management/condition surveys
- Implementation
- Calibration/certification

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

10

Freight Program

- Cross-cutting research program at TTI
- Motor Carriers: congestion, emissions, size, weight
- Maritime: inland waterways, port operations
- Border and Trade: border crossing performance measures, freight ITS
- Railroads: safety, infrastructure, markets
- Freight Systems and Planning: hazardous materials, Freight Shuttle

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

San Antonio Office

- Optimization of the project development process
- Energy and transportation sector interactions
- Utility coordination and conflict management
- Planning and operations
- Extensive South Texas coverage
- Support to TxDOT Districts (San Antonio, Laredo, Corpus Christi, Pharr)
- Coordination with local jurisdictions

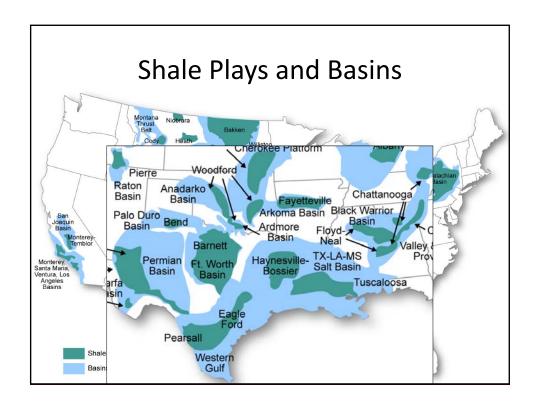
Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

2

Questions?

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants


Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

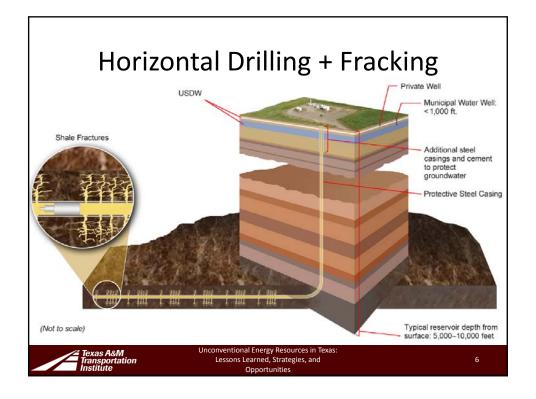
1

Oil and Gas Developments in Texas

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Hydraulic Fracturing ("Fracking")

- Rock fracturing using fluid at high pressure
- Water mixed with sand and chemicals
- Small fractures in rock enable gas, petroleum, and water to migrate to the well
- Has been around since the 1940s
- DOE's Eastern Gas Shales Project (EGSP)
 - Research and demonstration project
 - Cost-sharing with industry (1976-1992)


Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Hydraulic Fracturing ("Fracking")

- Horizontal drilling
 - Late 1980s, Austin Chalk Formation in Texas
 - 1991, Barnett Shale
- Slickwater fracturing
 - -1996/1997
 - Chemicals added to water to increase fluid flow
- Horizontal drilling + slickwater fracturing
 - Shale gas extraction became efficient and feasible

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Number of Rigs (07/2014)

• United States: 1,874 (55% of rigs worldwide)

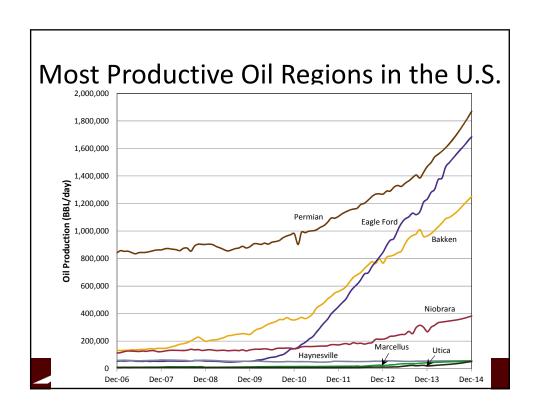
• Texas: 896 (48%)

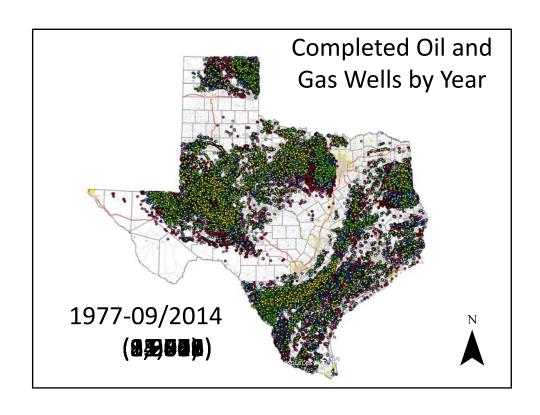
• Oklahoma: 209 (11%)

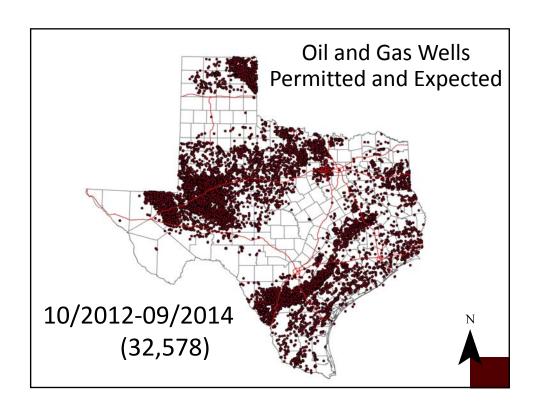
North Dakota: 171 (9.1%)New Mexico: 92 (4.9%)

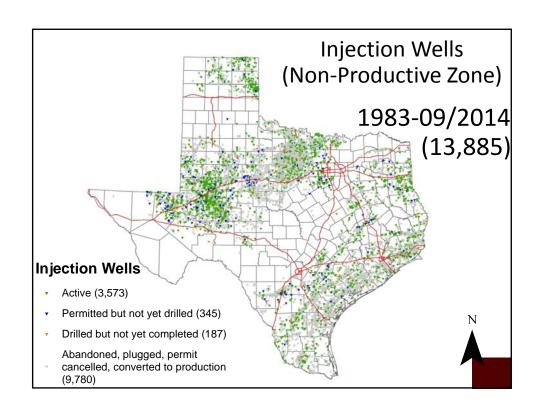
• Colorado: 68 (3.6%)

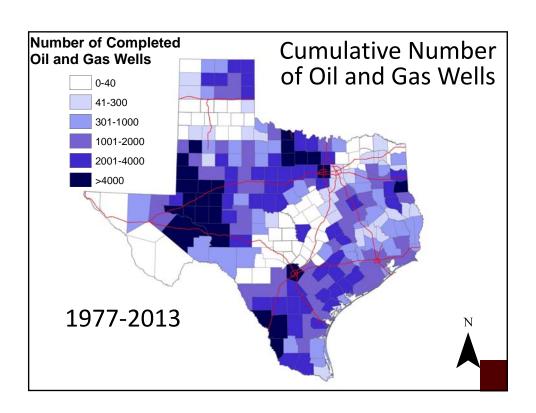
• Louisiana (onshore): 57 (3.0%)

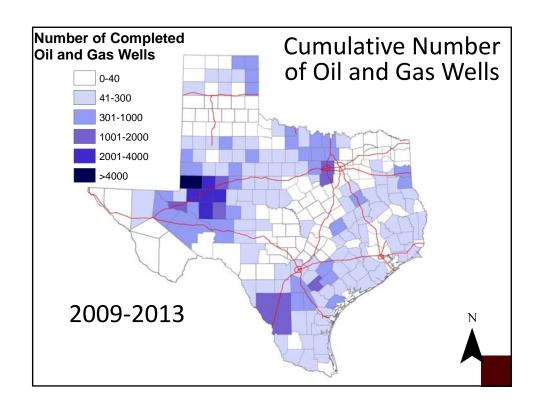

• Pennsylvania: 54 (2.9%)

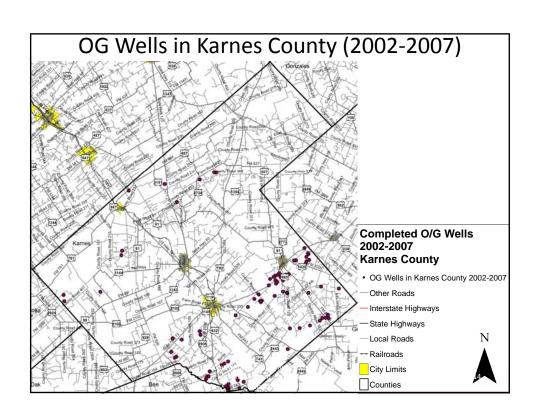

• Wyoming: 51 (2.7%)

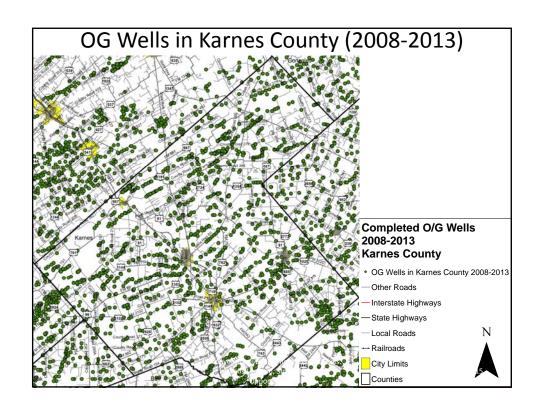


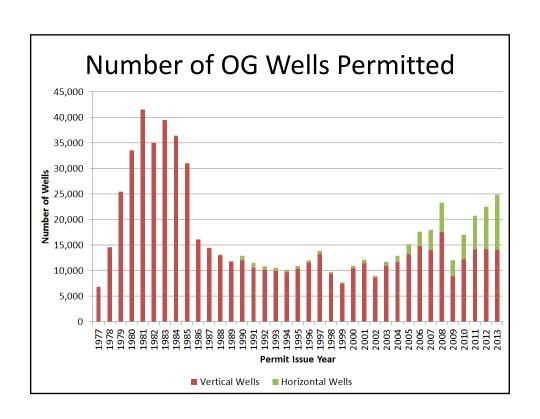

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

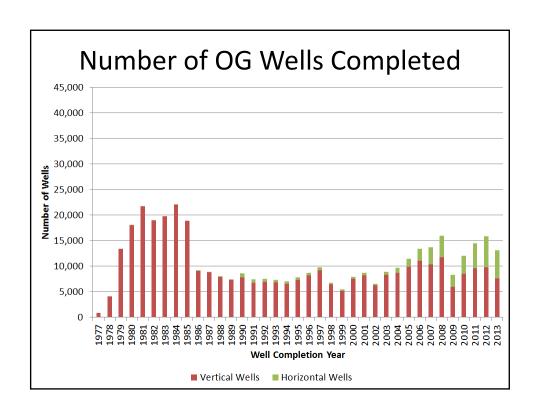


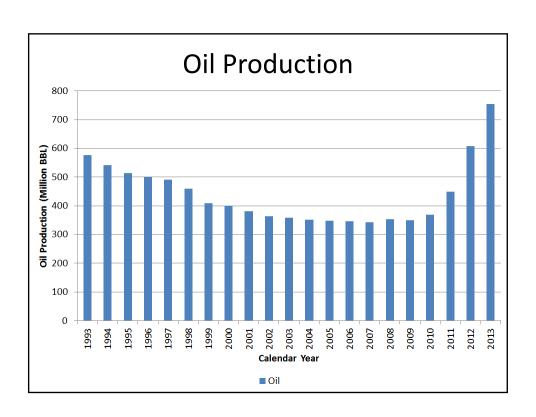


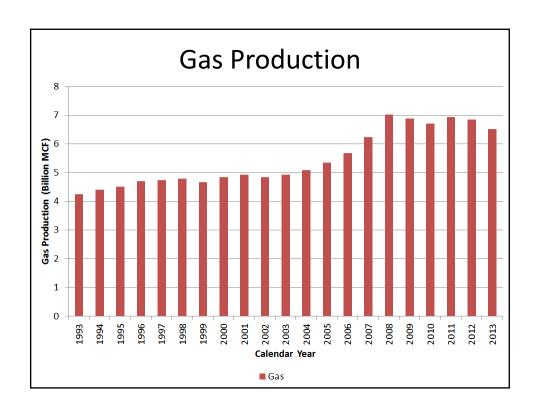


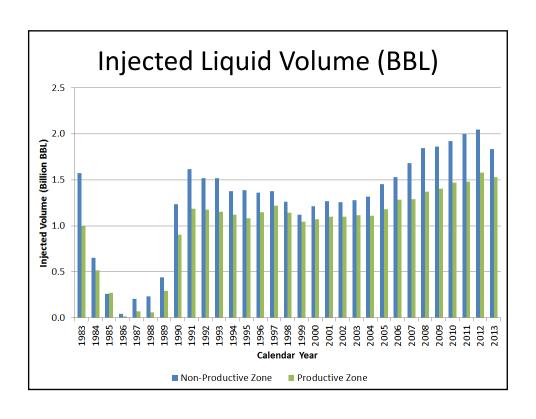


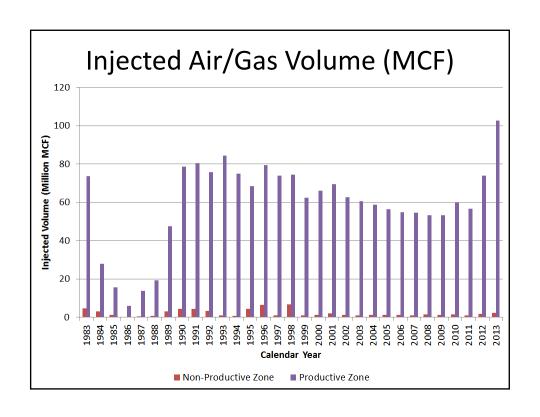


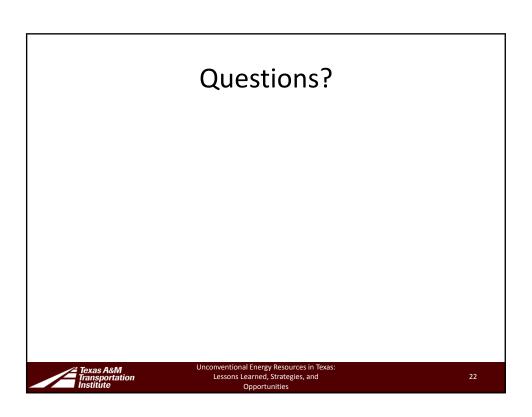












Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

1

Recent and Current Research and Technology Transfer

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

0-6498 Research Project

- Completed in 2012
- Impacts
 - Pavement impacts
 - Reduction in pavement life
 - Roadside impacts
 - Operational and safety impacts
- Statewide impact
 - \$1 billion per year (\$2 billion including local roads)

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

3

IH 35W – East Frontage Road

Pavement shoving, loss of surface

Pavement shoving, loss of surface
Unconventional Energy Resource

Conventional Energy Resources in Texa Lessons Learned, Strategies, and Opportunities

FM 2257

County road T-intersection

Shoulder patches, cracked seals

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

5

IH 35W – West Frontage Road

Tire tracks on unpaved shoulder

Tire tracks on safety end treatment

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

FM 1611

Drainage problem at driveway

Mud tracking

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

7

0-6498 Research Recommendations

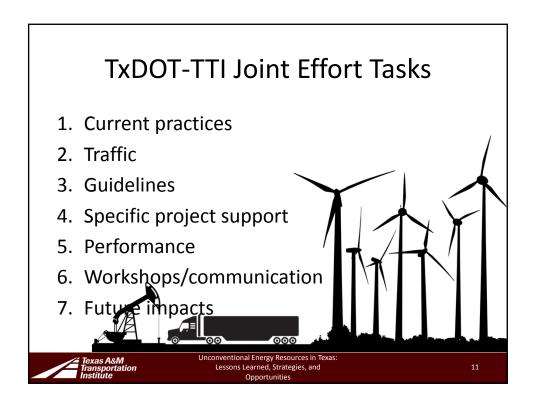
- Early notification and coordination
 - Improve communication and coordination with energy developers
 - Implement proactive mechanisms to learn about energy developments
 - Implement interagency cooperation agreements with other agencies
- Road maintenance and repair
- Roadside management
- Funding

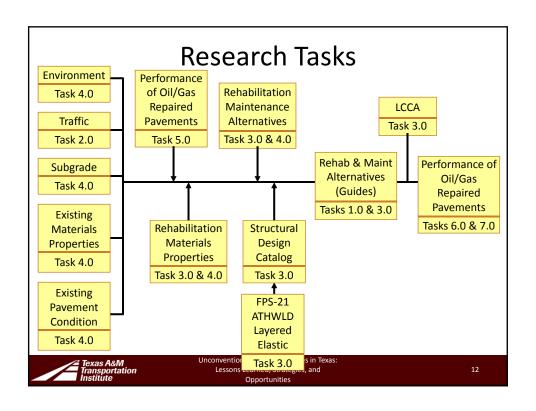
Jnconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

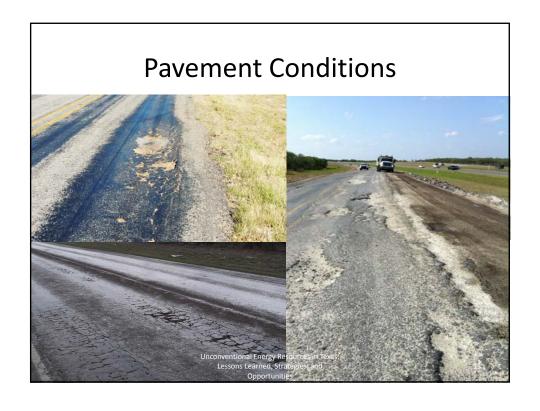
Current Initiatives

- TxDOT Maintenance Division Interagency Agreement
- Policy Research Center
- Comprehensive Energy and Transportation Sector Initiative
- Pool Fund Study

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities


۵


PAVEMENT DESIGN AND MAINTENANCE



Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

LO

Maintenance & Rehabilitation

ENERGY DEVELOPMENT TRAFFIC CHARACTERIZATION

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Relative Pavement Impact

Total Weight (lb)	Weight Ratio	EALF Ratio	Weight Ratio	EALF Ratio	Weight Ratio	EALF Ratio
	WRT 4	1,000 lb	WRT 35,000 lb		WRT 80,000 lb	
4,000	1	1				
10,000	2.5	23				
35,000	8.8	583	1	1		
80,000	20	18,009	2.3	31	1	1
84,000	21	22,210	2.4	38	1.05	1.2
90,000	22	28,511	2.6	49	1.1	1.6
100,000	25	42,753	2.9	73	1.2	2.4

Unconventional Energy Resources in Texa: Lessons Learned, Strategies, and Opportunities

17

Energy Traffic Characterization

- Number of truckloads is a function of:
 - Well type and depth
 - Geology
 - Drilling technology
- Water needs for fracking: 2 6 million gallons
- Vertical vs. horizontal wells (Marcellus Shale)
 - Vertical well fracking: 20,000 80,000 gallons
 - Horizontal well fracking: 2 9 million gallons

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Energy Traffic Characterization

- Barnett Shale (North Texas) example:
 - 187 truckloads for pad site preparation, rig mobilization, drilling operations, and rig removal
 - 997 truckloads for fracking (3.7 million gallons or 88,100 barrels of water needed for fracking and saltwater disposal)
 - 353 truckloads per year for maintenance, most of which involves saltwater loads for gas well injections
 - 997 truckloads every few years for refracking

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Energy Traffic Characterization											
		ERDA		SERDA		SDEC	NPS	Boulder County		рот	
	20	2009		2011		010	2008; 2009	2013	20	014	
Activity	1 Well	8 Wells, 2 Rigs	1	Well	1\	Well	1 Well	4 Wells	1 V	1 Well	
	Marcell	Marcellus Shale		llus Shale	e Marcellus Shale		Marcellus	Niobrara Shale.	Eagle Ford	Barnett	
	iviaicen	ius Silaie		Trucks & Pipeline	Trucks Only	Trucks & Pipeline	Shale	CO CO	Shale	Shale	
Drilling pad and construction equipment	10-45	10-45	45	45	45	45	10-45	90	318	70	
Drilling rig	35-45	60	190	190	95	95	30	90	310	4	
Drilling fluid and materials	25-50	200-400	360	360	45	45	25-50	270	1	15	
Drilling equipment: casing, drilling pipe	25-50	200-400	90	90	45	45	25-50	450	1	48	
Completion rig	15	30	400	400	50	50	15	40	240	4	
Completion fluid and materials	10-20	80-160	160	160	20	20	10-20	170	1		
Completion equipment: pipe, wellhead	5	10	10	10	5	5	5	10			
Hyd. frac. equipment: pump truck, tanks	150-200	300-400	350	350	175	175	100-150	320		94	
Hydraulic fracturing water	400-600	3200-4800	4000	480	500	60	100-1000	4200		685	
Hydraulic fracturing sand	20-25	160-200	184	184	23	23	100 1000	190	560		
Flowback water removal	200-300	1600-2400	800	136	100	17		1400		214	
Final pad preparation and miscellaneous			45	45	45	45					
TOTAL	895-1355	5850-8905	6634	2450	1148	625	310-1365	7230	1118	1134	
Well production equipment										353	
Oil and water removal (per year)								580	2190		
Operations and maintenance (per year)								150			
General maintenance (every 3-5 years)							25-40				

OS/OW Permits – Aug 2011-Jan 2014

Permit Type	No. of Permits	Percentage
Annual Permits	138,843	8%
Single Trip Permits	1,494,727	80%
Other Permits	230,666	12%
Total	1,864,236	100%

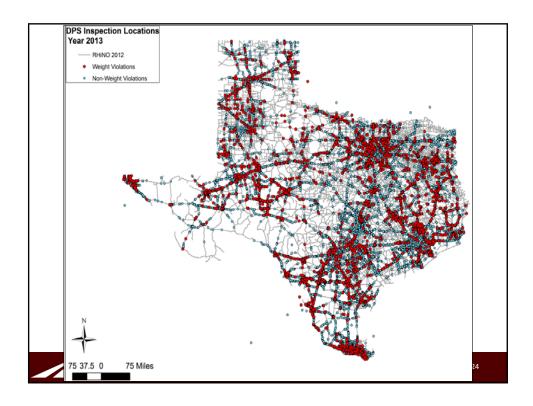
Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

21

OS/OW Permits – FY 2013

Industry Type	No. of Permits
All Industry Types	519,206
Oil and Gas Industry Related	224,500
% Permits Related to Oil & Gas Industry	43%

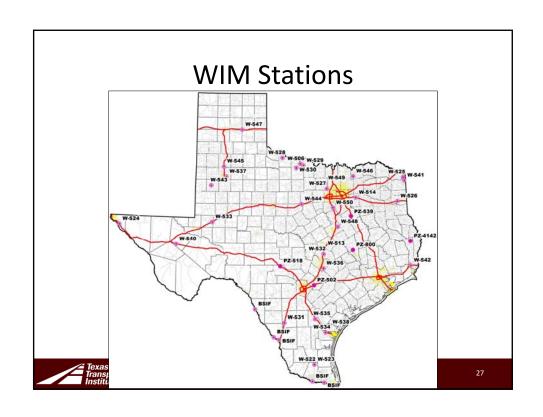
Oil & Gas Industry Permits	No. Permits	No. Trips
Annual permits	16,720	4,180,031
Single trip permits	180,002	180,002
Other permits	27,778	27,778
Total	224,500	4,387,810

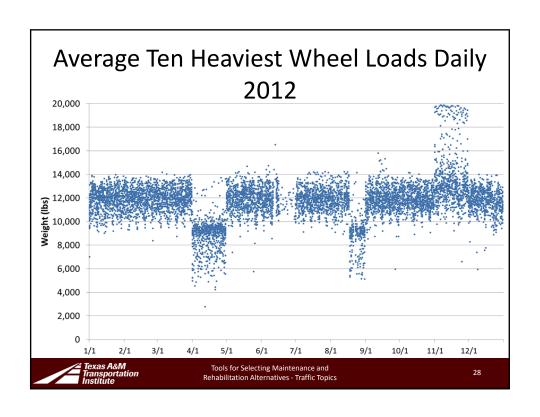

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

DPS Commercial Vehicle Inspection Data

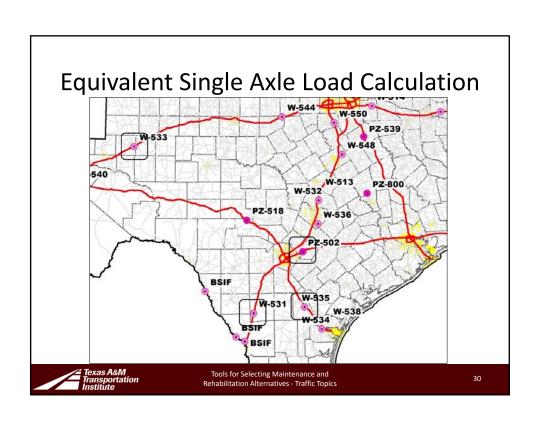
- Inspection data: 01/2010 06/2013
- Data files:
 - Inspection event data (e.g., location and time)
 - Violation description
 - Vehicle data (e.g., axle configuration)
 - Weight data (e.g., gross and axle group weight)
 - Hazmat data

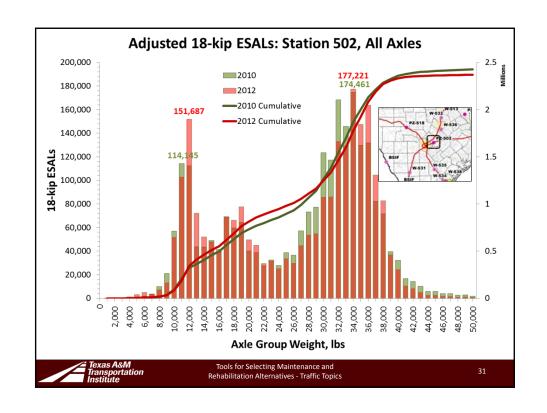
Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

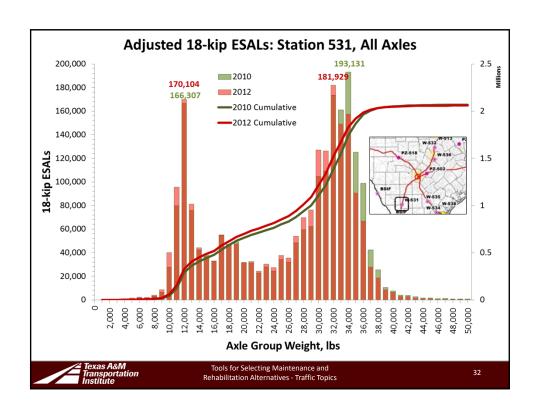

10 Highest GVWs for 5-Axle Trucks

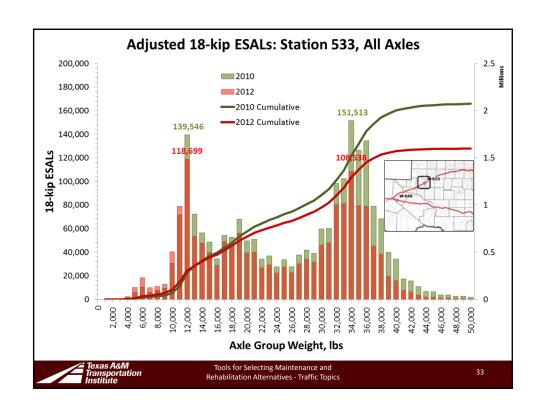

•	10 1 16 1 1 1 1 0 1 0 7 1 1 1 0 1 0 1 0 1 0 1 0							
	2010	2011	2012	2013 (June)				
1.	187,840	169,200	183,650	184,350				
2.	158,750	153,400	148,940	171,250				
3.	139,250	149,500	142,040	154,700				
4.	138,150	144,800	141,450	148,900				
5.	136,350	138,600	139,300	146,600				
6.	130,150	137,300	130,640	140,780				
7.	127,300	134,180	126,760	133,900				
8.	127,150	126,280	125,900	130,450				
9.	122,780	125,950	125,600	126,850				
10.	122,780	125,900	125,250	126,420				
	Texas A&M Transportation Institute	25						

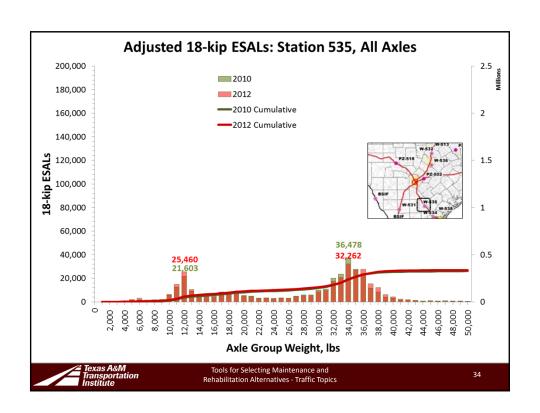
DETERMINATION OF WHEEL AND SINGLE-AXLE LOADS




Tools for Selecting Maintenance and Rehabilitation Alternatives - Traffic Topics





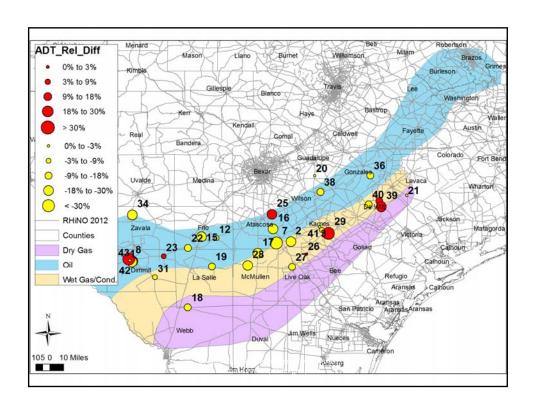

	WIM Station	2012 ATHWLD	2012 ATHWLD	2012 ATHWLD	
	WIN Station	Mean (lb)	Std. Dev. (lb)	Highest (lb)	
	142	12,178	1,896	15,234	
	502	12,310	1,432	16,127	
	506	11,623	816	13,614	
	513	12,871	2,304	19,864	
	518	12,183	1,280	16,998	
	522	11,583	1,342	16,491	
	523	11,489	1,023	13,459	
	524	11,507	1,034	13,757	
	525	11,473	1,223	13,305	
	526	11,989	1,263	14,595	
	527	12,390	2,131	19,136	
	528	11,066	1,038	13,525	
	529	11,647	993	13,426	
	530	10,267	1,545	12,765	
	531	11,755	1,286	15,190	
	532	10,689	1,580	13,294	1
	533	12,644	1,421	14,231	
	535	10,794	1,454	13,702	
	536	11,222	1,591	14,121	1
	537	12,267	2,681	19,809	
	538	11,488	1,093	14,716	
	539	12,715	1,584	18,298	
	540	11,552	1,921	13,922	
	541	11,110	1,656	13,636	1
	542	12,131	1,284	14,297	
Tex	543	10,178	1,389	12,985	29
liali Inst	544	11,765	1,070	14,286	23

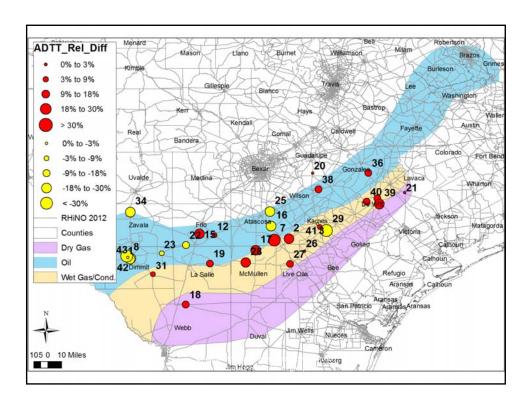
Roadside Impacts

- Roadside impacts
 - Driveway access and permitting
 - Utility accommodation and permitting
 - Crossings
 - Longitudinal installations
 - Gathering lines
 - Temporary lines
 - Easement issues

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

21


Other Impacts

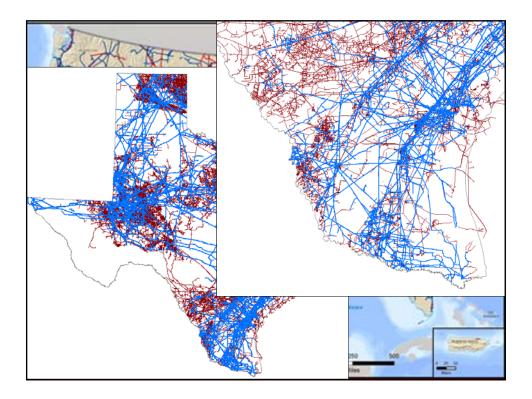

- Operational and safety impacts
 - Increase in the number of crashes and fatalities
 - Commercial vehicle safety violations

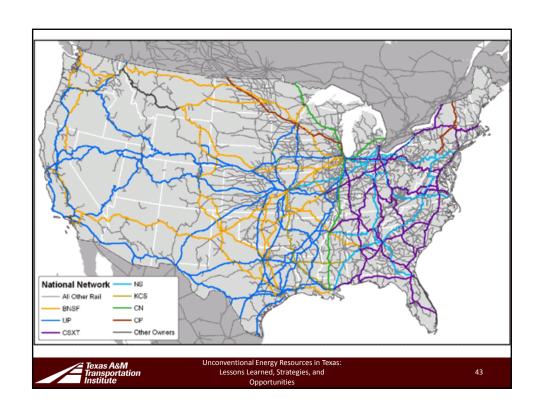
Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Vehicle Crash Statistics							
Region	Category	2009	2013	Change			
Eagle Ford	Total crashes	15,016	16,643	11%			
	Crashes involving CMVs	987	2,023	105%			
	Fatal crashes	140	170	21%			
	Fatal crashes involving CMVs	15	52	247%			
Permian Basin	Total crashes	21,141	22,074	4%			
	Crashes involving CMVs	1,145	2,125	86%			
	Fatal crashes	162	252	56%			
	Fatal crashes involving CMVs	18	62	244%			
Statewide	Total crashes	428,310	441,682	3%			
	Crashes involving CMVs	25,000	20,198	17%			
	Fatal crashes	2,821	3,038	8%			
	Fatal crashes involving CMVs	301	452	50%			

Hazmat Surveys

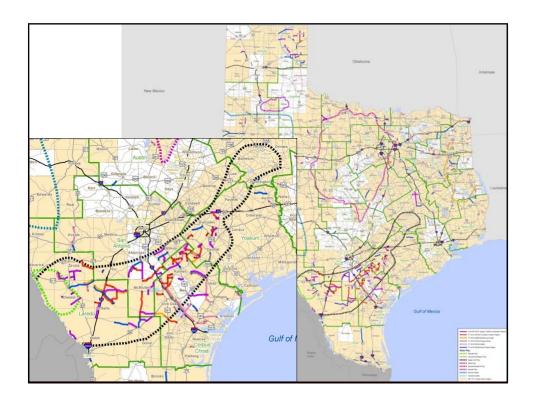
- Truck-based surveys
- Conducted at DPS inspection stations
- Focus on trucks with hazmat placards
- Information gathered:
 - Type of commodity
 - Origin
 - Destination
 - Some surveys conducted in energy development areas


Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities


Pipelines and Railroads

- New developments frequently occur in areas without pipeline or railroad infrastructure
 - Reliance on trucks
 - Truck use decreases as pipeline and railroad infrastructure is built
- Largely handled by private industry
- Little involvement at the state level
 - Permitting and mapping

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities



Funding Sources (State Level)

- 2012 Maintenance Funds (\$40M)
- 2013 HB 1025
 - \$225M for design-build and traditional letting
- 2014 Rural Needs (\$500M outside MPOs)
- 2014 Safety, Maintenance, and Energy Sector
 - \$200M (safety) and \$200M (maintenance and ES)
- 2015 Proposition 1 Funding (\$1.74B)
 - \$696M (connectivity), \$522M (regional corridors),\$261M (energy sector), \$261M (maintenance)

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Port Developments and Investments

- Port Arthur: Valero and Total refineries have invested ~\$2 billion in expansion – Motiva Enterprise refinery is largest in North America
- Houston area: \$30 billion committed for construction of refining and petrochemical facilities
- Corpus Christi: Tianjin Pipe Corporation locating \$1 billion+ manufacturing facility
- Corpus Christi: Cheniere Energy investing \$10 billion in LNG export terminal

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

47

Channel Improvement Projects

Region/Port	Proposed Depth	Status
Beaumont/Port Arthur	48	Authorized in WRRDA 2014, seeking funding.
Brownsville	52	Feasibility study completed. Waiting for Congressional authorization.
Corpus Christi	52	Reauthorized in WRRDA 2014, seeking funding. La Quinta extension (45 ft)
Corpus Christi	52	built in 2013.
Freeport	55	Authorized in WRRDA 2014, seeking funding.
Houston	45	Channel extensions to Bayport and Barbours Cut. Some widening included.
nouston	45	Under construction. Will do w/o federal aid. Will be done in 2015.

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

WATER AND ENVIRONMENTAL ISSUES

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

ло

Water and Environmental Issues

- Water management
 - Amount of water used for fracking
 - Vertical well fracking: 20,000–80,000 gallons
 - Horizontal well fracking: 2–9 million gallons
 - Disposal
 - Water is a byproduct in hydrocarbon production
 - Transportation and disposal for produced water
 - Best practices

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Water and Environmental Issues

- Fracking chemical components
 - Importance of disclosure
 - Chemical disclosure registry
- Emissions

Year	Low Dev	Low Development Scenario			Moderate Development Scenario			velopment	Scenario
	VOC	NO _X	CO	VOC	NO _X	CO	VOC	NO _X	CO
2011	101	66	50	101	66	50	101	66	50
2012	229	111	92	229	111	92	229	111	92
2015	347	108	113	417	121	130	512	140	154
2018	338	113	113	544	146	160	872	188	226

Not included: Projection of mid-stream sources, stack parameters of mid-stream sources, on-road sources, and construction of mid-stream facilities and pipelines

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

51

Questions?

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

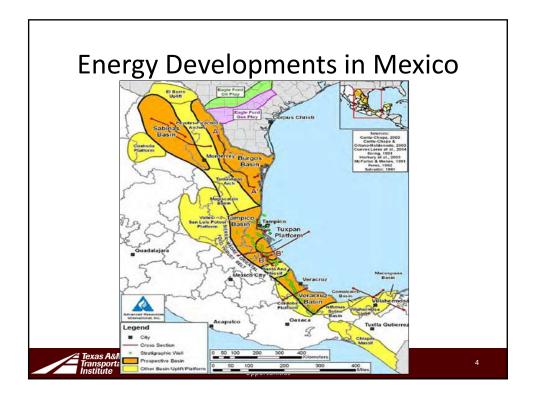
Meeting Agenda

Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

1

Breakout Table Discussions


Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Purpose and Goals

- Explore topics and issues of interest to participants in more detail in relation to energy developments and transportation infrastructure in Texas
- Identify transportation infrastructure needs in Mexico related to energy developments
- Identify areas of synergy and potential collaboration

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

Topics and Challenges

- Fracking sand
 - Available in Mexico, but properties are not the same
 - Transported by train from the U.S.
- Scarcity of trucks
- Transportation infrastructure
 - Pipelines, railroads, roads, ports
- Professional capacity
 - Public and private sectors

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

5

Topics and Challenges

- Scarcity of water
 - Water is available in South Texas through significant investments in water infrastructure over many years
 - Water infrastructure in Mexico
 - Cost to develop infrastructure to make large amounts of water available at a low cost to developers
- Water is a byproduct in hydrocarbon production
 - Transportation and disposal for produced water
 - Frequently ignored

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Topics and Challenges

- Early notification and coordination
 - Strategies to improve communication, coordination, and cooperation (3Cs) with energy developers
 - Case studies for interagency cooperation agreements

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities

7

Topics and Challenges

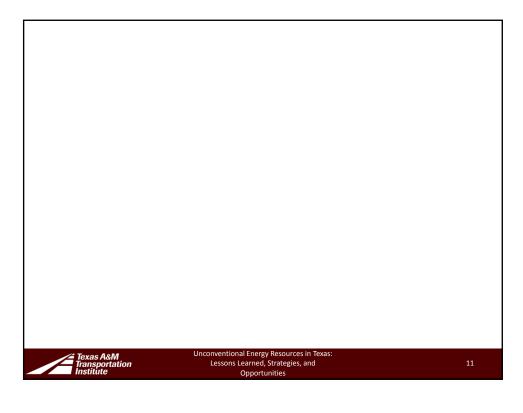
- Pavement structures
 - Techniques to prioritize repair, rehabilitation, and reconstruction of roadways
 - Region-sensitive truck traffic and pavement impact forecasting tools
 - More accurate, realistic parameters to design pavement structures in energy development regions

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Topics and Challenges

- Safety
 - Safety analysis techniques that focus on roadway characteristics, traffic levels, and crashes
 - Traffic safety countermeasures
- Roadside
 - Best practices for driveway impact assessment and permitting
 - Best practices for saltwater pipeline impact assessment and accommodation

Unconventional Energy Resources in Texas Lessons Learned, Strategies, and Opportunities


۵

Topics and Challenges

- Planning, environment, and design
 - Supply chains at different geographic levels
 - Methodology to determine bottlenecks and congestion areas
 - Data-driven parameters for environmental analyses
 - More accurate, realistic parameters to improve geometric design

Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities

Meeting Agenda Time **Topic** Speaker Welcome and Introductions Several speakers 8:30 AM - 9:00 AM 9:00 AM - 9:10 AM TTI Overview Cesar Quiroga 9:10 AM - 9:30 AM Oil and Gas Developments in Texas Cesar Quiroga 9:30 AM - 10:15 AM Recent and Current Research and Several speakers **Technology Transfer** 10:15 AM - 10:30 AM Break 10:30 AM - 11:30 AM **Breakout Table Discussions** All participants 11:30 AM - 11:50 AM **Breakout Group Presentations** Several speakers Wrap-Up, Next Steps, and Adjourn 11:50 AM - Noon All participants Unconventional Energy Resources in Te Lessons Learned, Strategies, and Opportunities

Meeting Agenda

Time	Topic	Speaker
8:30 AM – 9:00 AM	Welcome and Introductions	Several speakers
9:00 AM – 9:10 AM	TTI Overview	Cesar Quiroga
9:10 AM – 9:30 AM	Oil and Gas Developments in Texas	Cesar Quiroga
9:30 AM – 10:15 AM	Recent and Current Research and Technology Transfer	Several speakers
10:15 AM – 10:30 AM	Break	
10:30 AM – 11:30 AM	Breakout Table Discussions	All participants
11:30 AM – 11:50 AM	Breakout Group Presentations	Several speakers
11:50 AM – Noon	Wrap-Up, Next Steps, and Adjourn	All participants

Texas A&M Transportation Institute Unconventional Energy Resources in Texas: Lessons Learned, Strategies, and Opportunities