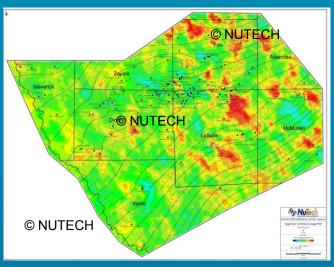

A Case Study into the Successful Evaluation and Completion Non-conventional Wells in Mexico

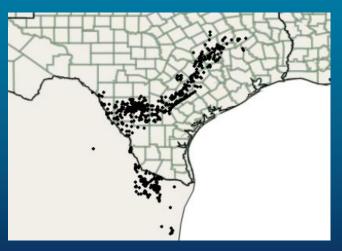
Jorge Viamontes, PhD VP Reservoir Intelligence, NUTECH

- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geomechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

NUTECH Timeline

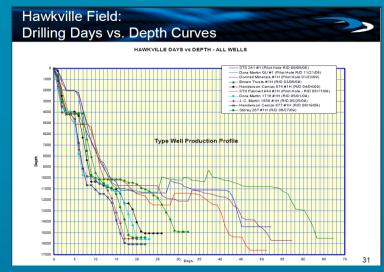


NUTECH Experience in the Eagle Ford and Burgos Basins

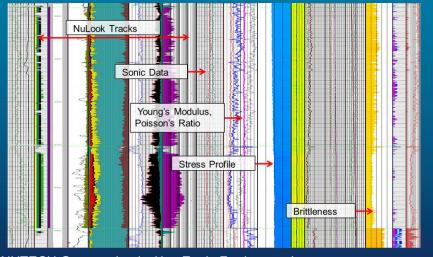

- Field Studies developed with publically available data since 2009
 Over 2000 wells
- Over 2000 wells evaluated and over 500 completions designed for operators

- Eagle Ford analog analysis
- Analysis and completion design of 8 new wells in the Eagle Ford and 2 new wells in La Pimienta

© NUTECH - Effective Porosity Map Eagle Ford

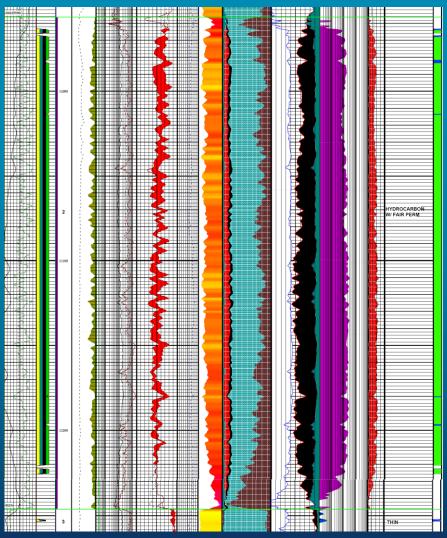


Evaluated well sample - NUTECH


- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geomechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

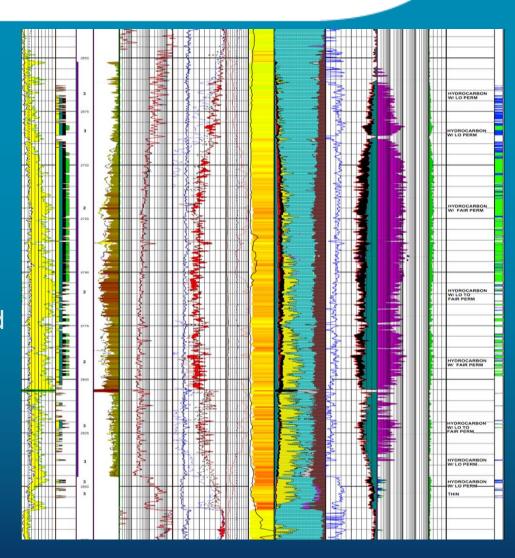
Unconventional Analysis in New Plays

- Use of depositional analogs
- Use of local knowledge and available research
- Core Analysis
- NULOOK petrophysical analysis
- Geo-Mechanical modeling using sonic data and calibrated acoustic modeling
- NUSTIM multi-scenario completion design for vertical section
- NUSTIM optimization of spacing for horizontal completion

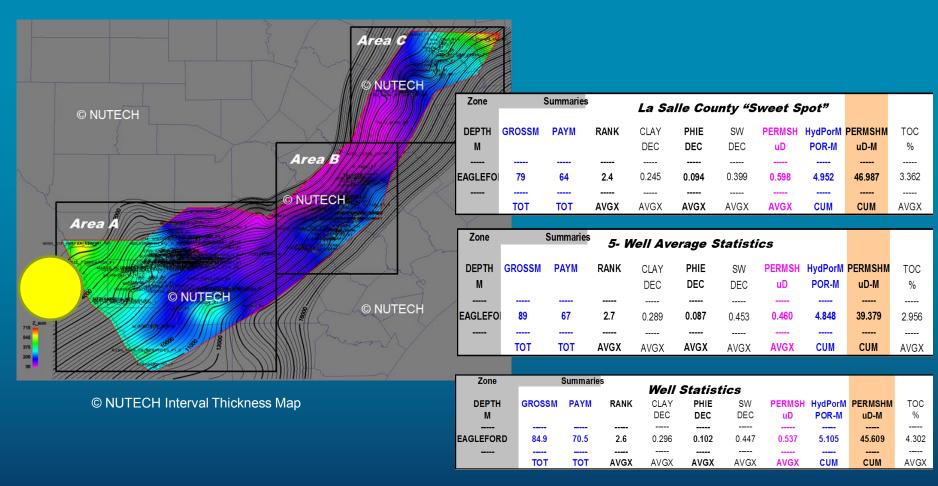


Source: BHPBilliton (Formerly Petrohawk)

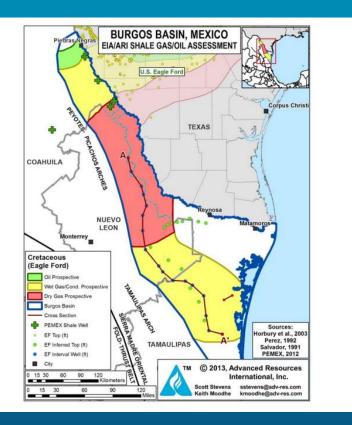
Petrophysical Process


- Determine Clay Volume using multiple clay indicators
- Determine Kerogen fraction using modeling from GR, Resistivity, Density, and Neutron
- Gamma Ray Method (Uranium Model) Russell 1945 & Fertl 1978
- Density Method (Modified Schmocker) Schmocker 1983
- Resistivity Method (Modified Passey) Meyer 1984 & Passey 1990
- Correct for Kerogen effect on log data
- Use Kerogen corrected data to solve for Silica, Lime, Heavy Minerals, and Porosity

Eagle Ford example La Salle Co., TX


Petrophysical Process

- Determine Bound Water using Multi-Modeling Logic
- Determine Permeability using algorithm developed from completed well production and stimulation matching and/or good core data
- Determine Adsorbed and Free Gas volumes from core determined data (Langmuir Isotherms)


- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geomechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

Eagle Ford

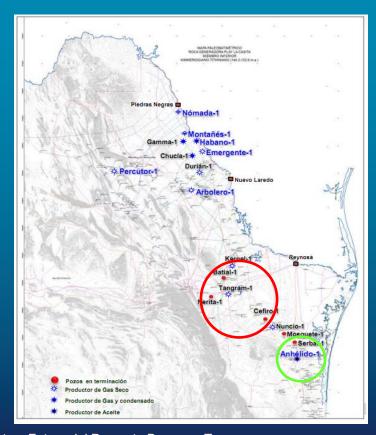
© NUTECH Eagle Ford Comparison

La Pimienta

Eagle Ford, La Casita and La Pimienta formations map. Source: EIA/ARI World Shale Gas and Shale Oil Resource Assessment 2013

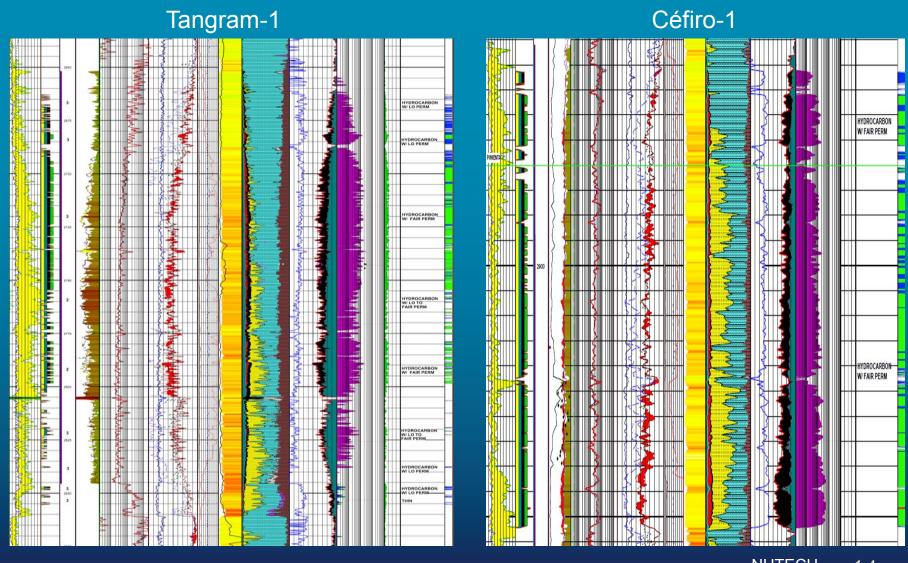
- **Upper Jurassic deposition**
- EIA/ARI: "Correlates with the productive Haynesville shale of the East Texas Basin"
- Expected TOC: ~3%
- Expected Thermal Maturity: >1.4% Ro (Gas)
- BUT Anhélido-1 well had IP of 432 BOPD + 1.9 MMCFPD (Source: Pemex)

PEM	1EX⊗		Main [)isco	veries in 2012
<u>Project</u>	<u>Well</u>	<u>Geologic</u> <u>Age</u>	Initial Prod Oil & Condensates (bd)	luction Gas (MMcfd)	<u>Type of</u> <u>Hydrocarbons</u>
Burgos	Master-1 Tepozan-1 Paie-1	Cretaceous Tertiary Tortiary	34 72	20.7	Dry Gas Wet Gas Wet Cos
<	Anhelido-1	Jurassic	432	1.9	Gas and Condensates

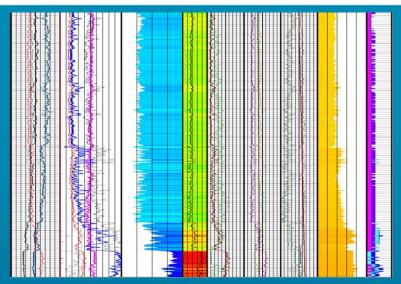

Source: Pemex Preliminary Results 2012

La Pimienta- Haynesville Comparison

Zone		Summari	es										
DEPTH	GROSSM	PAYM	RANK	CLAY	PHIE	SW	PERMSH	HydPorM	PERMSHM	TOC	Total GIP	Adsorbed GIF	Free GIP
M				DEC	DEC	DEC	uD	POR-M	uD-M	%	BCF/sec	BCF/sec	BCF/sec
			_		_					_			
LA PIMIENTA	194	94	2.3	0.119	0.084	0.654	0.413	6.184	80.1913	3.633	161.482	70.044	91.438
			_		_					_			
	TOT	TOT	AVGX	AVGX	AVGX	AVGX	AVGX	CUM	CUM	AVGX	CUM	CUM	CUM


	Haynesville/	LA Pimienta	La Pimienta		
Shale Play	Bossier	NUTECH	ARI		
Region	East TX/ LA				
Geology					
Age	Late Jurassic				
Basin	East TX/North LA Salt				
Area (Sq Miles)	9,000		9,000		
Depth (Ft)	10,500-13,500	8,200-9,100	3,300-8,500		
Thickness (Ft)	200-300	300-375	200-500		
Quartz (Wt %)	30-35%	20-40%			
Carbonate (Wt %)	13-44%	25-60%			
Clay (Wt %)	35-45%	10-20%	Low		
Reservoir Rock					
Temperature (°F)	300-370	260-280			
Reservoir Pressure (Psi)	9,000-11,000		Normal		
Pressure Gradient (Psi/Ft)	0.8-0.9				
Permeability (µD)	0.1-1	0.4			
Porosity (%)	8-10%	8.40%			
YM (x10 ⁶ Psi)	2-5	2-8			
Poisson's Ratio	0.2-0.35	0.25-0.35			
Brinell Hardness Number	18				
Fracture Gradient (Psi/Ft)	1				
Disc. Mahusib.					
Play Maturity	0.5-4%	0.1 4.5	20/		
TOC (%)		0.1 - 4.5	3%		
Kerogen Type	Type II	Type II	2.05.4.40/		
Thermal Maturity (% Ro)	1.8-2.5%	0.85 - 2.2%	0.85-1.4%		
Tmax (°F)	905-940	822-850			
HI (mg HC/g TOC)	100-205	78-249			
S1/TOC (mg HC/g TOC)	39				

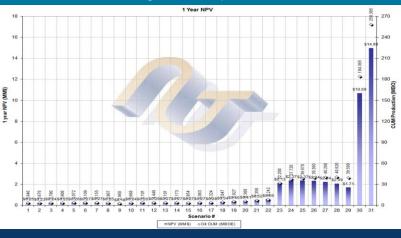
© NUTECH La Pimienta NULOOK



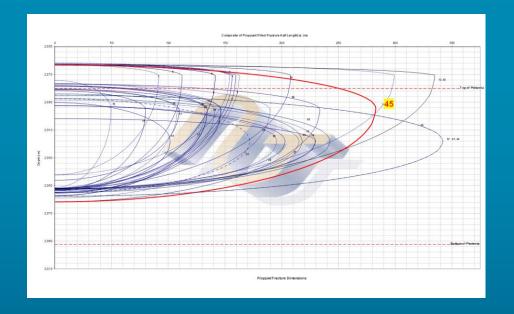
- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geomechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

Tangram-1 and Céfiro-1 Evaluations

Tangram-1 Completion


© NUTECH Tangram-1 Geo-mechanical Log

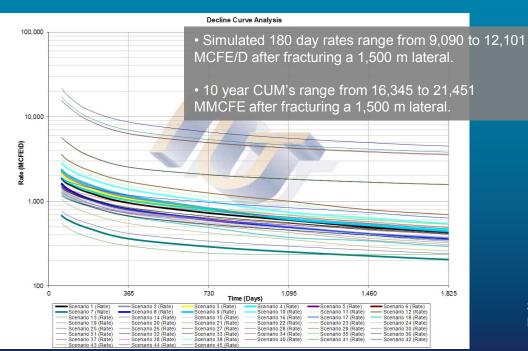
- Completion optimized in the vertical section for different variables of proppant type and concentration, injection rate, treatment size
- Horizontal spacing optimized based to maximize customer-specific financial terms



Céfiro-1 vs. Tangram-1 Completions

- For the Céfiro-1 well, the client requested the evaluation of treatments in three different landing depths
- The selected scenario was not the most optimal for production because horizontal trajectory had been drilled

 The mainstream approach to completion design in unconventional reservoirs is to use "Best Practices" for a specific field. However, the stratigraphic variation and geo-mechanical heterogeneity typical of shale reservoirs makes this approach inefficient. Even though Tangram-1 and Cefiro-1 are in the same field, their completion design was significantly different


- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geo-mechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

Production

Both Tangram and Céfiro-1: IP: 10.9 MMCFPD (in-line with NUTECH's prediction)

Céfiro-1 production reached over 12 MMCFPD and Pemex estimates it could get to 20 MMCFPD but do not have the surface facilities

Tangram-1 and Céfiro-1 are the best two shale gas wells in Mexico

Source: Pemex

Exploración							
Año	Cons.	Localización	Prof. md	Prod. Inicial MMpcd	Prod. Inicial Bpd		
2010	1	Emergente-1	4,071	2.8			
2011	2	Nómada-1	2,850	Trazas			
	3	Montañés-1	3,200	0.1			
2012	4	Percutor-1	3,436	2.2			
	5	Habano-1	3,770	2.8	27		
	6	Arbolero-1	4,007	3.1			
	7	Anhélido-1	3,550	1.9	333		
2013 8	8	Chucla-1	4,100	1.9	24		
	9	Durián-1	4,200	1.9			
	10	Nuncio-1	4,900	2.9			
	11	Gamma-1	3,793	0.3	12		
	12	Kernel-1	4,404	2.8			
	13	Tangram-1	4,426	10.9			
	14	Serbal-1	4,800				
	15	Batial-1	4,196				
	16	Céfiro-1	4,700				
	17	Mosquete-1	4,181				
	18	Nerita-1	3,810				

Source: Presente y Futuro del Proyecto Burgos – Texas Energy Summit – November 2013

Lessons Learned

- La Pimienta shows geologic similarities to the Haynesville formation in East Texas but with better expected production rates and a likely oil window to the south
- Carbonate content increases S-N as the formation dips deeper
- Landing points should be selected based on stratigraphic changes in the formation
- Geo-mechanical variation is key to proppant selection
- Eagle Ford completions can be improved with proper proppant selection and treatment size optimization
- Less economical wells should be used for field characterization
- "Best Practices" approach not ideal for La Pimienta and Eagle Ford formations

- NUTECH experience in the Eagle Ford and Burgos Basins
- How NUTECH's unconventional analysis process is used in new shale plays
- Highlight similarities and differences between the Eagle Ford, Haynesville and La Pimienta formations
- Tangram and Céfiro examples Petrophysical analysis, geomechanical modeling and completion design considerations
- Well performance and lessons learned
- Moving forward in La Pimienta and Eagle Ford

