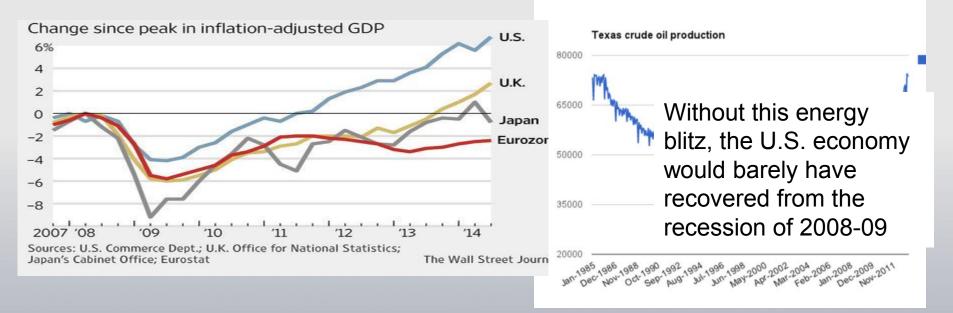
DRILLING IN ARID REGIONS: WATER LESSONS LEARNED FROM THE EAGLE FORD

Carl Vavra,
Frank Platt &
David B. Burnett
Global Petroleum Research Institute
Texas A&M University
November 2014



Background

Unconventional Shale Gas Revolution has Saved America

The EU Left Behind

USA World Leader

Shale Development Can Re-Energize Mexican Economy

For more Info see:

Background

Planning Unconventional Oil & Gas Development in Arid Regions

Key Issues

- 1. Lack of Infrastructure
- 2. Fresh Water Resource Uses
- 3. Public/policy Demands (environmental & perception Issues)
- 4. Potential for Water Contamination

Challenge

1. Lack of Infrastructure

Transport of equipment and support services across semi arid Rangelands becomes a major logistics issue

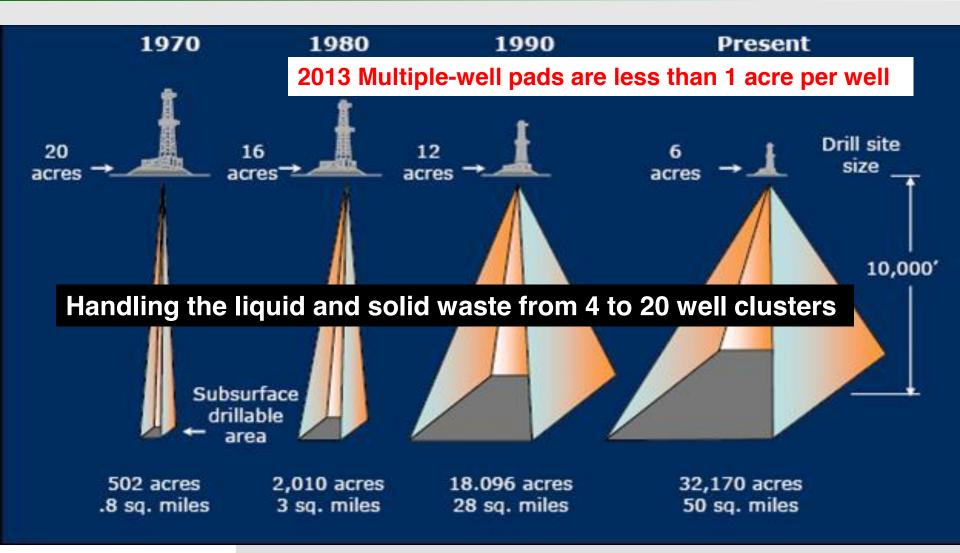
Site Access

Every site needs a road to link it to the outside world. New technology promises to protect sensitive environments from the damage that putting in a conventional road causes.

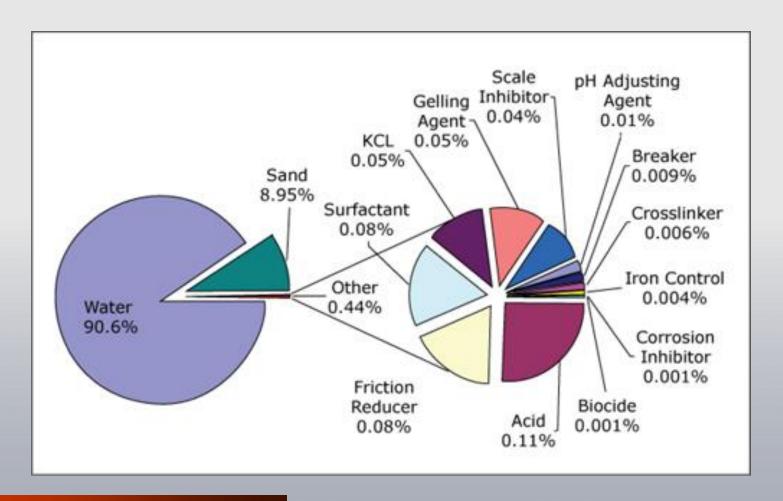
2. Water Use; Eagle Ford Shale Well & a City of 4,000 Population

Operation Needs	Well Operations	City Operations(1)	Comments
Water Usage	10 million gal	18 million gal (3 mo.)	5-6 mm gal frac. 1-2 mm gal well ops.
Power Use	7,500 HP	6 MW (8,000 Hp)	Avg. SCR rig
Solid Waste	100,000 lbs. (wbm, 10,000 ft well)	1,600,000 lbs (3 months)	3 mo. Ops. MSW highly variable
Unit Budget	\$2 to \$5 MM	~\$1.7 MM	3 mo. Ops.

In 2003, 4.5 lbs. of waste generated per person per day. That's 1,600,000 lbs. for 4000 people over 3 months (90 days).


⁽¹⁾ Comparison to Andrews TX city budget (pop.9,600) 2008 FY

⁽²⁾ R. T. Wright "Environmental Science 10 ed. 2008 Pearson Prentice Hall



2. Water Re-Use and Surface Ops in O&G- Waste Management

Composition of Fracturing Fluid - Generic

For more Info see:

3. GPRI and Key Environmental Programs

Technology Trends

The Global Petroleum Research Institute within the Department

of Petroleum
Engineering at Texas
A&M University has
collaboration programs
both within the
University and with
External Research

For more Info see:

Centers.

www.efdsystems.orQ

http://irnr.tamu.edu/about/

http://www.colorado.edu/news/releases

https://sites.google.com/site/amadvancedanalytics/

http://efdsystems.org/index.php/coastal-impacts-technology-program-citp

http://outreach.colorado.edu/programs/details/id/359

The Environmentally Friendly Drilling Program

A&M Institute of Renewable Natural Resources

CU –Boulder
Sustainability Research
Network

HARC Coastal Impacts
Improvement

GSI Environmental Advanced Analytics

Intermountain Oil and Gas Best Management Practices Project

4. There is either not enough water or too much water

Arid land is unable to soak up large amounts of sudden rainfall

As a result erosion from water run off is a major issue for site access roads

Technology Trends

Recycling & Re-Using Flowback and Produced Water

Waste constituent

Produced water:

- Water
- Chemicals (and heavy metals)
- Low-solids percentage and distribution
- hydrocarbons
- Varies by location
- Some sort of separation from oil is usually done

Drilling Wastes

- Water
- ■High solids (~ 5-8% by volume)
- Chemicals (mud additives)
- Lower Hydrocarbons concentration
- Miscellaneous

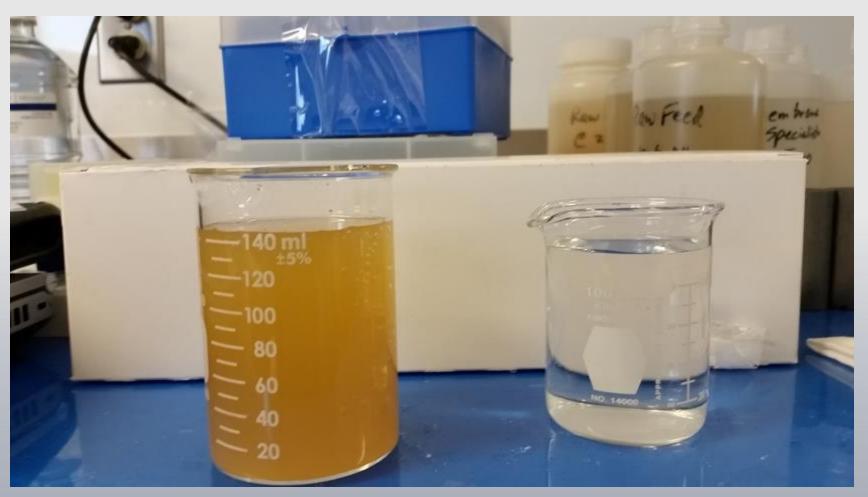
Technology Trend

Why Treat Brine before Re-Use?

Initial Sampling & Treatment

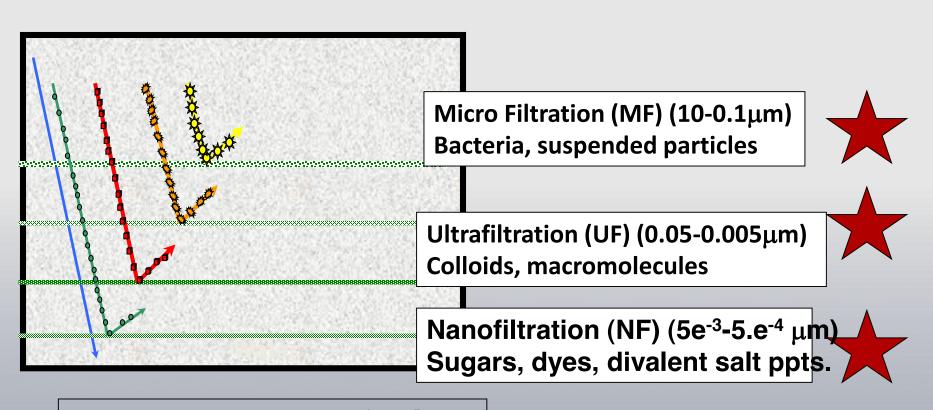
Un-Treated Treated

Eagle Ford Field Frac Pond Brine

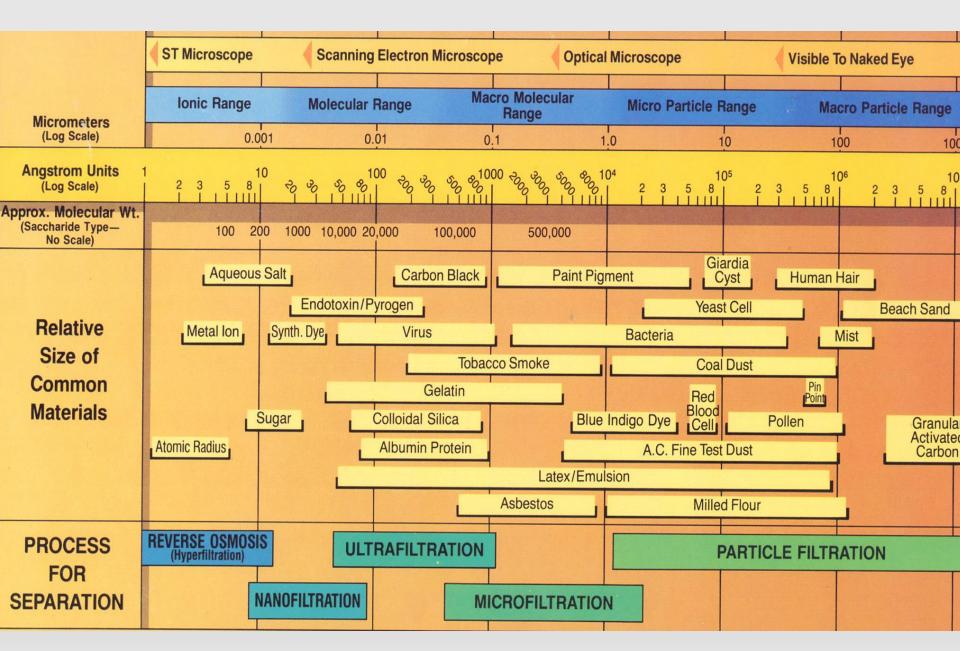

After Three Weeks

Treated

Un-Treated


West, Texas Permian Basin Field Trial

Feed


Permeate

Membranes are More than RO

Reverse Osmosis (RO) (1. e^{-4} -1 e^{-5} µm) Monovalent salts, ionic metals

Size of Common Materials

Pre-Treatment of Liquids Before Membrane Applications

Gravity
Settling Tanks
Hydrocyclones
Centrifuges

Dead End Filtration

Strainers

Stainless Steel Screens

Cartridge Filters

Bag Filters

Mycelx & Polymer Ventures – oil removal

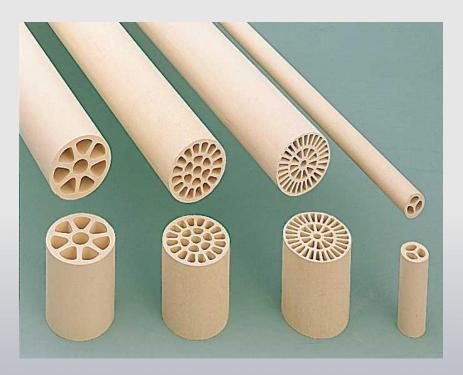
Low Pressure Media Filtration to Remove Oil & Grease

Oil & Grease Removal

Membrane Types

- Tubular
- Hollow Fibers
- Plates
- Spiral Wound
- Pleated Sheet

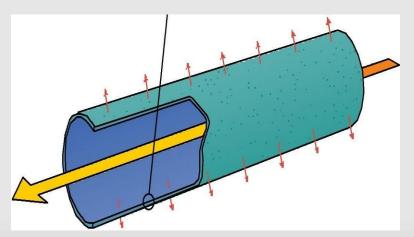
Tubular Modules



Spiral Elements

Hollow Fiber Cartridges

Ceramic Membrane Elements and Modules



- Expensive
- Long life: >15 years

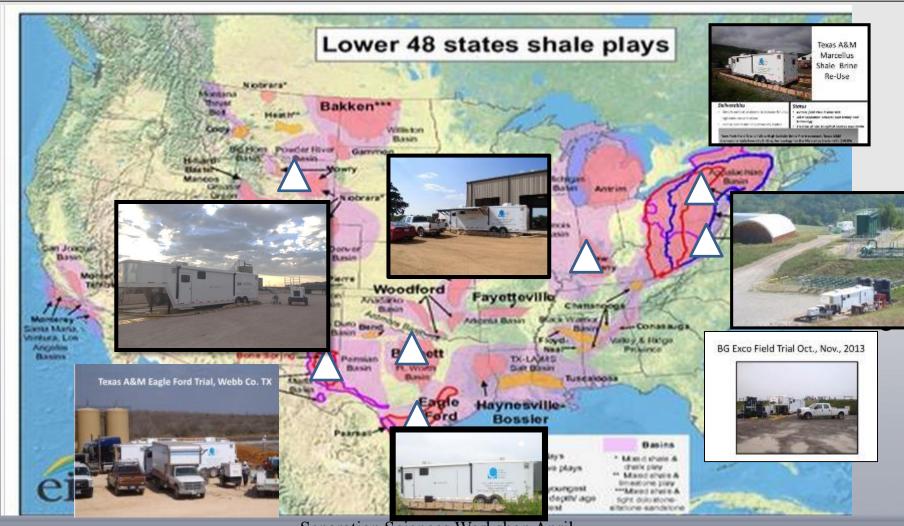
Applications:

Dairy, CIP solutions, Process water, Catalyst recovery

Scepter Membrane Elements and Modules

- Expensive
- Long life: >15 years
- MF pore sizes only

- Applications:
- Chemical clarification, Oil / Water separation, Starch recovery, Catalyst recovery


Membrane Systems

UF Skids and Piping

(Source GE Water)

EFD Field Trials

Separation Sciences Workshop April 20, 2009

Produced Water Treatment - New York - Utica

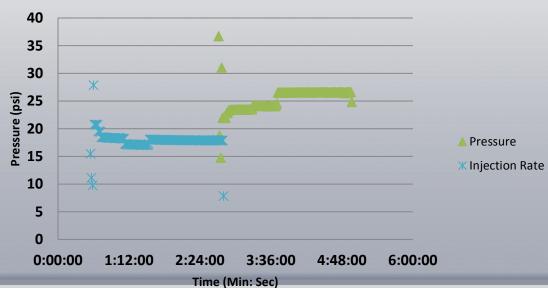
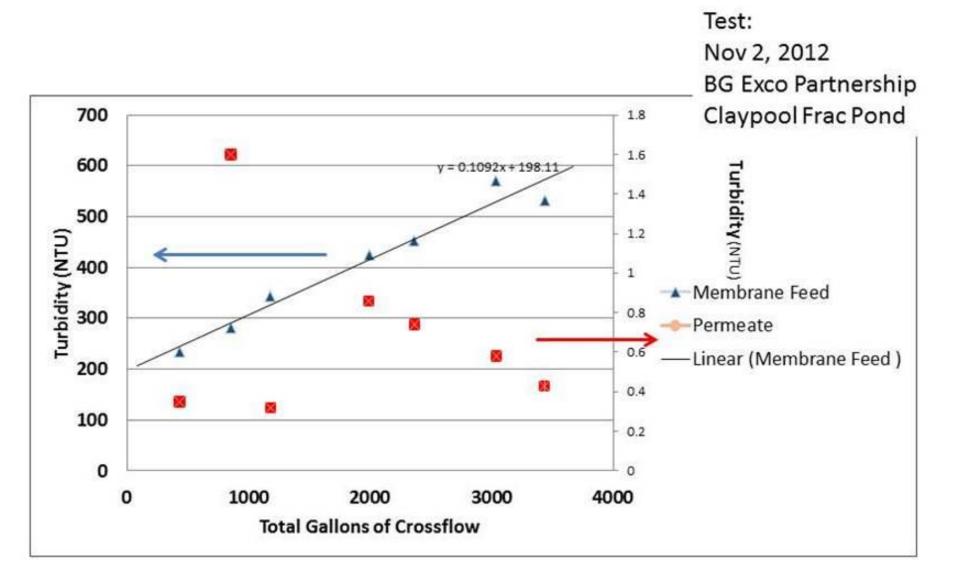


Figure 2B shows the mobile laboratory on its environmental protection apron at the field site. The large black poly tank contains waste fluids

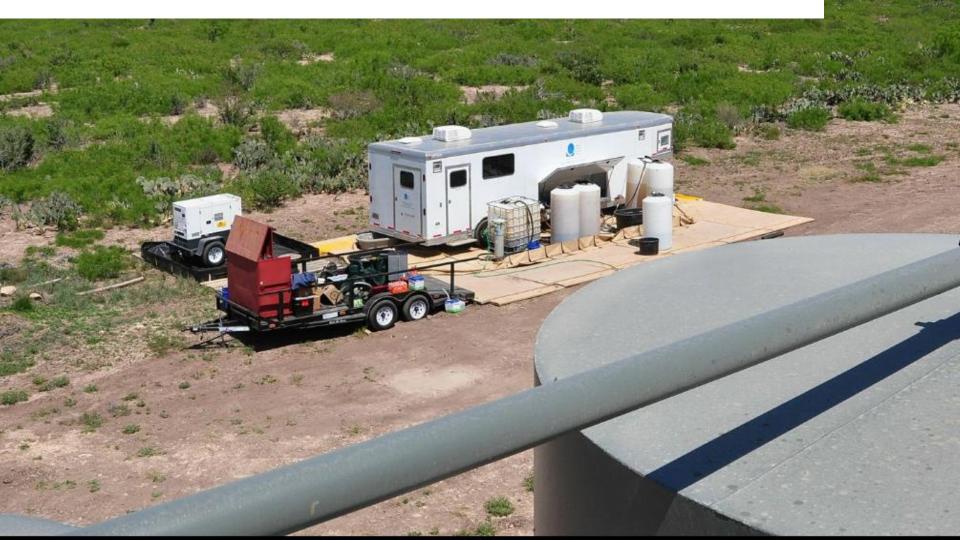
Produced Water Treatment – New York – Utica

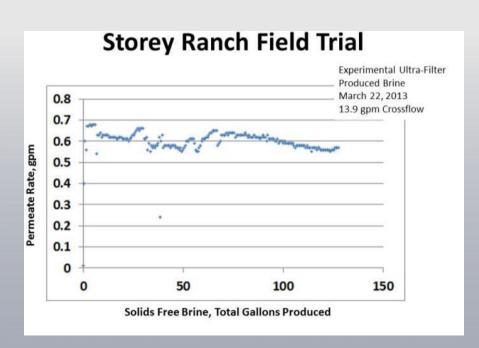
Samples	Date	Test Description	Duration	KW Used	Cost per bbl
S-62, S-63	Sept. 2	Running Dow NF (B)	3.35	0.2	\$0.84
S-58, S-59	Sept. 2	Koch UF			\$0.0275
S-84, S-85	Sept. 20	Media	325 (gal)	0.3	\$0.0039
		Koch UF	63.63	2.1	\$0.14
				Total of cells 1,3&4 = \$0.98	


Pressure and Rate Koch Hollow Fiber August 25, 2011

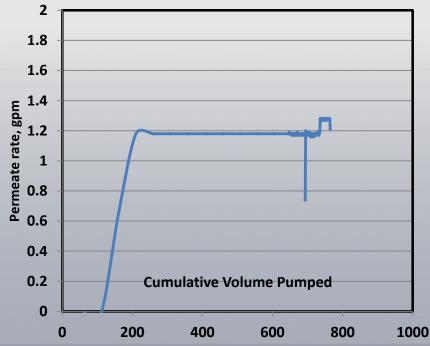
New York Field Trial

Sample Number	Filtration Description	Turbidity (ntu)	Total Iron	TDS (ppm)	Conductivity (ms/cm)	рН	тос
S-1	Raw Water	60	270	220,000		5.7	90
S-1	After Media	21	222				73
S-60	After Micro	3.6	55				28
S-61	After Nano	0.4	22				22


Experimental Ultra Filter Solids Removal Efficiency


Water Treatment Research in the Eagle Ford; LaSalle Co. Texas

GPRI Designs Mobile Water Treatment Unit on site in South Texas



South Texas Eagle Ford Trial 2013

Ultrafilter Permeate vs. Total Volume

On Site Analytical Measurement.

BG Trial September 2012

Media Pre-Treatment

Sample Number	Sample Identification	Turbidity (ntu)	Total Iron	TDS (ppm)	Conductivit y (ms/cm)	рН	TOC
SP-1	Pre-treatment	307				6.7	92
SP-2	Post-treatment						61
SP-3	Pre-treatment	357					98
SP-4	Post-treatment	264					63
		254 (After ABS)					

Pre-treatment consists of 10µm screen then oil and grease removal step followed by BTEX removal

Microbac Laboratories, Inc.

Pittsburgh Division

100 Marshall Drive Warrendale, PA 15086 Phone: 724-772-0610 Fax: 724-772-1686

www microbac com

CERTIFICATE OF ANALYSIS

Work Order Number:

*WALK - IN CLIENT TAMV-GPRI RM407 RICHARDS COLLEGE STATION

Drinking Water Pota

Sample#: 2101705-Description: DRAF Date and Time San Analysis Performed b

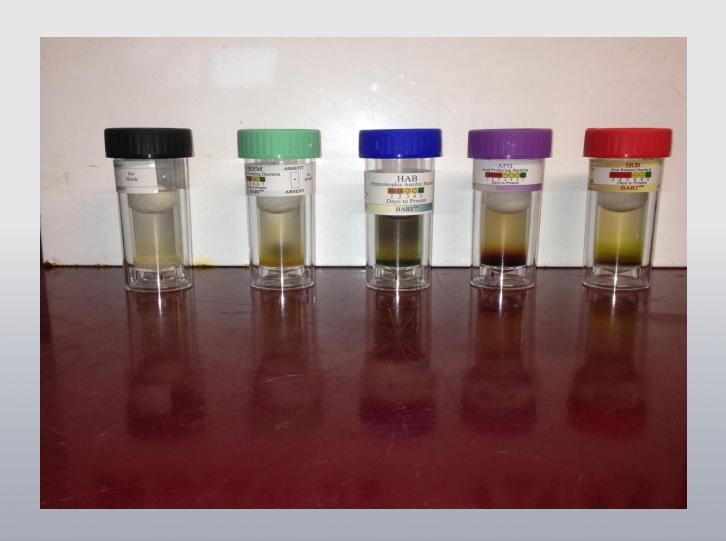
Ultra-Filter Results Before >5700E cfu per ml After 1E cfu per ml

_	-	is Performed by:	Microbac Laboratories Inc.,	, Pittsburgh Division			
	DRAFT: Miscellaneous Analysis	DRAFT: Miscellaneous Analysis	Method	Qualifier	Result	Units	D
	Water Meets USEPA Standard?	Water Meets USEPA Standa	ard? -		See below	No Units	10/2
	DRAFT: Microbiology Analysis	DRAFT: Microbiology Analysis	Method	Qualifier	Result	Units	D
	Coliform	Coliform	SM 9223 B		See below	per 100 mL	10/2
	E. coll	E. coll	SM 9223 B		See below	per 100 mL	10/2
	Heterotrophic Plate Count	. Heterotrophic Plate Count	SM 9215 B		> 5700E	cfu per mL	10/2

Sample#: 2101705-02

Description: DRAFT: Feed Water

Date and Time Sampled: 10/25/2012


le#: 2101705-02

iption: DRAFT: Feed Water

and Time Sampled: 10/25/2012 15:00

Analysis Performed by:	Microbi	12 13.00					
Alayon Performed by.	is Performed by: Mic	robac Laboratories i	Inc., Pittsburgh Division				
DRAFT: Miscellaneous Analysis	DRAFT: Miscellaneous Analysis	Method	Qualifier	Result	Units		D
Water Meets USEPA Stand	lard? Water Meets USEPA Standard?	-		See below	No Units		10/2
DRAFT: Microbiology Analysis	DRAFT: Microbiology	Method	Qualifier	Recult	Unito		
Coliform	SM 9223 B		See below per 100 mL		10/26/12	15:00 LMZ	
E. coll	SM 9223 B		See below per 100 mL		10/26/12	15:00 LMZ	
Heterotrophic Plate Count	SM 9215 B		> 5700E cfu per mL		10/26/12	15:00 LMZ	

HACH Bacteria Test Vials

HACH Bacteria Test Vials

Med. - High Pressure Membranes and On-Line Sensors

Nanofiltration for Divalent Ion Removal – creates stable solids free brines for fracturing fluids

Analytes: Non Purgeable Organics

Figure 5. GE Analytical equipment for TOC analysis- Figure 6 Samples Analysis in Mobile Laboratory

For more Info see:

http://www.geinstruments.com/products-and-services/toc-analyzers

Portable Oil in Water Analytic

For more Info see:

The EFD Team

Co-funded by RPSEA, U.S. Fish & Wildlife, Industry, Environmental Organizations

For more Info see:

Membrane (Physical removal)

Representative power costs of desalination of oil field brine

Salinity of Feed Brine, tds (ppm)	Brine, Power Costs Kw Hr per 1,000 gal. Permeate					
обо (рртту	Pre- treatment	RO desalination	Operating Cost, \$ per 1,000 gal.	Operating Cost, \$ per bbl		
Contaminated Surface water ~1,500 tds.	\$.65	\$1.25	\$1.90	\$0.08		
Gas well produced brine ~ 3,600 tds.	\$2.50	\$2.00	\$4.50	\$0.19		
Oil well produced brine ~50,000 tds	\$2.20	\$6.00	\$8.20	\$0.34		
Gas well produced brine ~ 35,000 tds	\$2.00 (est.)	\$4.20 (est.)	\$6.20 (est.)	\$0.26		

Workshop April 20, 2009

Looking Ahead - Advanced Analytics

Air Emissions from Produced Water Open Impoundments

Frac flowback Water Sampling

Stray Methane Gas Sampling

For more Info see:

http://epicphotogear.com/tip/panos

EFD Coastal Impacts Technology Program

2012 – 2014 Comprehensive Program

- Implements technologies along the Texas Gulf Coast
- Measures effectiveness of technologies to conserve, protect or restore the coastal environment
- Will inform and educate a needed workforce.

Selected by the Texas Coastal Advisory Board for funding.

For more Info see:

http://efdsystems.org/index.php/coastal-impacts-technology-program-c

Government Partners; South Texas

You are here: Home > News Flash

Eagle Ford News

Posted on: November 4, 2013

Energy infrastructure, transport and finance highlight 20th U.S.-Mexico Border Energy Forum

AUSTIN —Top corporate executives and government officials — including Gary Doer, Canada's Ambassador to the United States— will meet to discuss energy infrastructure, transport and finance at the 20th annual U.S.-Mexico Border Energy Forum, Nov. 6-8 at the Embassy Suites San Antonio Riverwalk-Downtown.

*The Barder Energy English has worked to establish partnerships and energy ages

Thank you

Links to More Information

Videos and Panorama Shots

http://epicphotogear.com/tip/panos/

Water Treatment Video Link

http://www.youtube.com/watch?v=hdoiWXDU6ek

http:/www.efdsystems.org

https://sites.google.com/site/amefdtipprogram2013/page-3